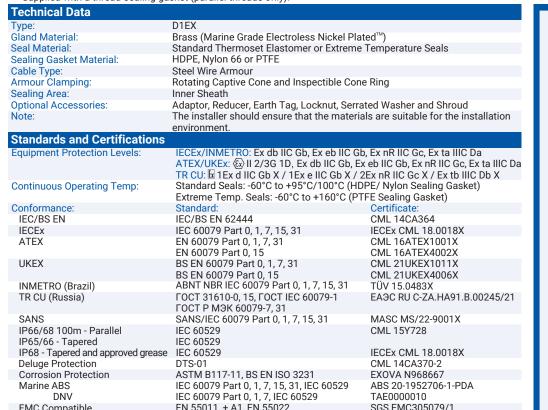


D1EX

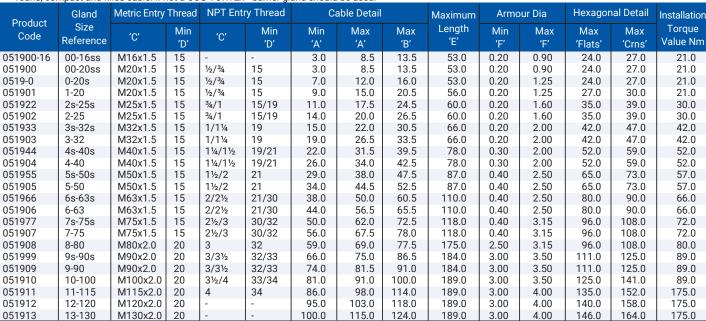
Ex db IIC, Ex eb IIC, Ex nR IIC, Ex ta IIIC

CAPTIVE COMPONENT GLAND® for Steel Wire Armoured Cable


Features and Benefits

- For indoors, outdoors, Group II, III, Zone 1, 2, 20, 21 and 22 hazardous areas.
- Two-part handling, no loose parts
- A freely rotating captive cone and inspectable cone ring provides an armour clamp and earth bond on steel wire armour. A specially formulated captive elastomeric seal for Built-in Safety™, seals on the inner sheath of the cable IP65/66/68. Precision manufactured from high-quality brass (Marine Grade Electroless Nickel Plated™).

- Supplied with a thread-sealing gasket (parallel threads only)



The cable glands shall only be used where the temperature, at the point of entry, is between -60°C to +95°C (standard seals & HDPE sealing gaskets), -60°C to +100°C (standard seal and Nylon sealing gasket) or -60°C to +160°C (extreme temp. seal & PTFE sealing gasket) depending on seal and gasket used.
 Note: According to IEC 60079-14, 10.6.2: An Ex d gland will only maintain Ex d integrity when used with substantially round, compact and filled cable. If not a CCG VORTEx® barrier gland should be used.

All dimensions except NPT are in mm. Intermediate thread sizes are available on request. NPT threads should be tightened 'wrench tight'

FITTING INSTRUCTIONS

Metric Illustration

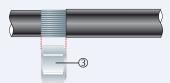
CABLE TERMINATIONS

D1EX GLAND

ENCLOSURES AND EQUIPMENT TO WHICH CABLE GLANDS ARE FITTED:-

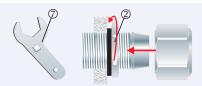
- Must be made from materials which are compatible with the cable gland materials.
 Have a sealing area around the cable gland entry point with a surface roughness
- < Ra 6.3 μm.
- Have entries that are perpendicular to the enclosure face in the area where the cable gland will seal to within 2.5°.
 Are sealed using the supplied sealing gasket (parallel threads) or by fully tightening.
- Are sealed using the supplied sealing gasket (parallel threads) or by fully tightening into a threaded entry (tapered threads). Note that for tapered threads the IP rating can be improved to IP68 with the use of a suitable thread sealant.

MUST HAVE THREADED ENTRIES

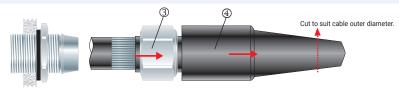

- The same thread size as the cable gland. (Thread adapters should be used to correct
- any mismatch).
- With a thread tolerance of metric class '6H' or equivalent.
- Where the thread length is a minimum of 10mm for Ex d applications or 3mm for all other applications

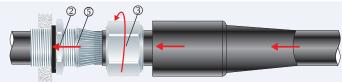
OR CLEARANCE HOLES (not Ex d)

- Where the hole size is the thread nominal size with a tolerance of +0.1 to +0.7mm.
 (e.g. the clearance hole for an M20 thread will have a diameter between 20.1mm and 20.7mm).
- Through material that is between 1mm and 12mm thick. (Thicker materials can be accommodated using glands with extended entry threads.)

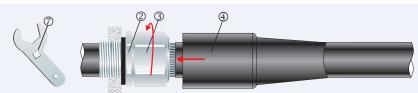

1. For accurate sizing, use a CCG Dimension Tape lacktriangle on the inner and outer cable sheath.

2. Cut back the cable outer sheath to expose the armour to a length not more than the outer ③.


3. To maintain IP66/68, ensure the gasket 1 is in place.


 Screw the inner ② into the apparatus and tighten to the installation torque using a CCG Spanner ⑦. If the gland has NPT entry threads fitted to a threaded entry then IP68 (2m) can be achieved by applying one of the following tested and approved grease types to the thread:- Renolit Lubrene CA700 or LX220 EP2, Renolit LC-WP2 or Moly LX2, or Dow Corning 4 Electrical Compound.

If the apparatus is untapped use a locknut.


5. Cut the shroud 4 to suit the cable outer diameter. Pass the shroud 4 and the outer 3 over the cable.

6. Pass the cable end through the inner ②. Splay the armour wires over the cone ⑤. Tighten the outer ③ onto the inner ② until hand tight, then tighten with a CCG Spanner ⑦ with ¾ turn to lock the armour between the cone ⑤ and the cone ring ⑥

7. Unscrew the outer ③. Check that the amour has locked between the cone ⑤ and cone ring ⑥. (O-Ring on the cone ring ⑥ is sacrificial).

8. Tighten the outer @ onto the inner @ to the installation torque using a CCG Spanner @. Slide the shroud @ over the gland.